#### Université Gustave Eiffel

# Hierarchical data analysis: definitions and optimization

Benjamin Perret

GT GDMM Nancy 15-16/11/2021



1

### Plan

- **1. Introduction**
- 2. Hierarchical watersheds
- 3. Ultrametric fitting
- 4. Component tree loss function
- 5. Conclusion and Perspectives

### Plan

#### 1. Introduction

- 2. Hierarchical watersheds
- 3. Ultrametric fitting
- 4. Component tree loss function
- 5. Conclusion and Perspectives

### **Hierarchical representations**

**Expectation:** iterative decomposition of the space



Image

Hierarchy of partitions

### **Hierarchical representation**



**Reality: imperfect representation** 









### **Classic processing scheme**

- **1. Compute relevant features in tree space**
- 2. Process this new structured space



Tree: relation of inclusion between regions



### **Hierarchies of segmentations**

#### Dendrogram

- Vertex weighted tree
- Fast access to scale relation between regions
- "Combinatorial" algorithms

#### Saliency Map / Ultrametric distance

- Edge weighted graph
- Visualization
- "Numeric" algorithms





## Example

Interactive segmentation

#### **Two markers**

**Object** 

**B: background marker F: foreground marker** 



#### https://perso.esiee.fr/~perretb/ISeg/

The largest regions of the hierarchy that intersect B but do not touch F





Bottom-up propagation



Top-down propagation

#### **Motivations**

Challenges

Optimal hierarchies: Definitions and algorithms

Machine learning and hierarchies: Continuous optimization scheme

Flexible topological regularization Link with topological persistence

### Plan

#### **1. Introduction**

- 2. Hierarchical watersheds
- 3. Ultrametric fitting
- 4. Topological regularization
- 5. Conclusion and Perspectives

### From clustering to hierarchical clustering?



**Clustering/cut algorithm** 

Implicit or explicit scale parameter



Do we get a hierarchy when the scale parameter varies? In most cases: no

For watershed cuts: YES







### Minima of an edge weighted graphs

A minima of the graph G is a subgraph G' = (V', E') such that:

- G' is connected;
- G' has a constant weight:  $\exists k, \forall e \in E', w(e) = k$ ; and
- all edges surrounding G' have a weight greater than  $k: \forall \{x, y\} \in E, x \in E', y \notin E', w(e) > k.$



### Watershed and Minimum spanning forest

A subgraph  $G^* = (V, E^*)$  is a minimum spanning forest rooted in the minima of G if:

 $E^* = \underset{E' \subseteq E}{\operatorname{arg\,min}} \sum_{e \in E'} w(e),$ 

s.t. each connected component of (V, E') contains one minimum of G



Cousty et al. IEEE TPAMI 2009

Minimum spanning forest: yellow edges

Induced watershed cut: dashed edges

### Watershed – example

#### Watersheds usually over-segment images

Filter minima whose measure is below a given threshold



Image



Gradient (edge weights)



Watershed



Watershed after applying an area filter of size 1000 to the gradient

### Hierarchical Watershed - idea

#### Watersheds usually over-segment images

Filter minima whose measure is below a given threshold

Connected filter: do not create or move contours Give the importance of a minimum: size, depth, volume... of the associated catchement bassin Ranks the minima according to the measure

#### Varying the threshold produces a sequence of fine to coarse partitions We call it a Watershed Hierarchy

### **Hierarchical Watershed - formalization**

Given a sequence of minima  $S = (M_1, M_2, \ldots, M_n)$  of G, a hierarchical watershed of G for S is a sequence of nested watersheds  $WS_i$ ,  $i = 1 \ldots n$  such that  $WS_i$  is induced by a minimum spanning forest rooted in  $\{M_1, \ldots, M_i\}$ 



Watershed hierarchy for the sequence (, , ), )

#### Hierarchical Watershed – examples



(a) Original



In natural image analysis: result close to the state of the art methods but 10x faster

S cities dataset



(c) WS-Dynamics



(d) WS-Area

#### Images

Perret et al. TIP 2018





**3D models** Philipp-Foliguet et al. PR 2011

### Plan

- **1. Introduction**
- 2. Hierarchical watersheds
- 3. Ultrametric fitting
- 4. Component tree loss function
- 5. Conclusion and Perspectives

### Ultrametric fitting - motivation

- Continuous optimization of hierarchical cost functions
- Flexible cost functions
- Integration with other machine learning methods



Input: Undirected graph with dissimilarity edge weights Input: Hierarchical cost function



#### **Output:** Best hierarchy given as a saliency map

Associated publication: Chierchia and Perret NeurIPS 2019, Chierchia and Perret JSMTE 2020

### Ultrametric fitting – Optimization problem



### Ultrametric fitting – Optimization problem

Reformulation with an implicit constraint

 $\underset{\tilde{w}\in\mathcal{W}}{\operatorname{minimize}} J(\Phi_{\mathcal{G}}(\tilde{w}); w)$ 



Where  $\Phi_{\mathcal{G}}$  is the subdominant ultrametric operator

$$(\forall \tilde{w} \in \mathcal{W}, \forall e_{xy} \in E) \qquad \Phi_G(\tilde{w})(e_{xy}) = \min_{P \in \mathcal{P}_{xy}} \max_{e' \in P} \tilde{w}(e')$$



**Optimization with a gradient descent algorithm** 

### Ultrametric fitting – Cost functions



Closest ultrametric: data fidelity term  $J_{closest}$ L2 loss between the input edge weights and the saliency map



Cluster size: regularization  $J_{size}$ Penalize small clusters close to the root



Triplet loss: semi-supervision  $J_{triplet}$ Decrease intra-cluster distance, increase inter-cluster distance



**Dasgupta's loss**  $J_{Dasgupta}$ Relaxation of a famous hierarchical loss (NP-hard)

### Ultrametric fitting – Examples



#### Ultrametric fitting – Supervised hierarchical segmentation

Structured end-to-end deep learning of hierarchical segmentation  $\Phi_{\mathcal{G}}$  can be a seen as an "Ultrametric" layer



#### Ultrametric fitting – Supervised hierarchical clustering

#### Simulated dataset 3D human model



#### Ultrametric fitting – Supervised hierarchical clustering

#### **Results after training**

Image





Without Ultrametric Layer





With Ultrametric Layer





### Plan

- **1. Introduction**
- 2. Hierarchical watersheds
- 3. Ultrametric fitting
- 4. Component tree loss function
- 5. Conclusion and Perspectives

### **Component tree loss function - motivation**

Component trees: max/min-trees

Classical representation in mathematical morphology

**Differentiable loss function based on component tree** 

#### Component tree loss function – Max-tree

Hierarchy of the level sets' connected components



The nodes  $C_1, \ldots, C_4$  are associated to the altitude vector  $\mathbf{a} = [0, 1, 2, 3]$ 

#### Max-tree – Altitudes

Jacobian of the node altitudes

$$rac{\partial \mathbf{a}}{\partial \mathbf{f}} = \left[\mathbb{1}_{\mathrm{par}(v_1)}, \dots, \mathbb{1}_{\mathrm{par}(v_n)}
ight]$$

- par(v) is the parent of the node v
- $\mathbb{1}_{C_k}$  is the column vector equals to 1 in position k and 0 elsewhere



Component tree loss function – Maxima Loss



Select the k most interesting maxima

Measure of importance: im



#### **Reinforce selected maxima, remove others**

Measure of saliency: sm

Must be a function of the max-tree node altitudes

$$J_r(\mathbf{sm}, \mathbf{im}; k) = \sum_{i=1}^{i \le k} \max(m - \mathbf{sm}_{\mathbf{r}_i}, 0) + \sum_{i=k+1} \mathbf{sm}_{\mathbf{r}_i}$$
  
with  $\mathbf{r} = \operatorname{argsort}(\mathbf{im})$ ,

#### Max tree – Maxima importance



#### **Extinction values**

How long does a maxima survive during a filtering process? The filtering can be based on depth, area, volume The higher the value the more important it is



#### Max tree – Maxima saliency

Saliency Measure : Dynamics



Component tree loss function – Topological Persistence



#### Component tree loss function – Toy Example 1

#### Optimization of $J_r(\mathbf{sm}, \mathbf{im}; 2)$

Input Image





#### Component tree loss function – Toy Example 2

**Combining different loss terms for image filtering** 

**Data fidelity + maxima loss + smoothness** 

$$||\mathbf{f} - \mathbf{y}||_2^2 + \lambda_1 J_r(\mathbf{dyn}(\mathbf{f}), \mathbf{dyn}(\mathbf{f}), 1) + \lambda_2 ||\nabla \mathbf{f}||_2^2$$

#### Input image y



#### **Optimized image f**



### Component tree loss function – Marker proposal

- **Context of interactive segmentation**
- **Propose interesting markers for the user**



Small number of maxima

### Component tree loss function – Marker proposal







**Segmentation** 

#### **Ground-truth**



















### Plan

- 1. Curriculum
- 2. Introduction
- **3. Connected Operators**
- 4. Component tree loss function
- 5. Conclusion and Perspectives

#### **Conclusion and perspectives**

Summary



#### **Optimal hierarchies**

**Combinatorial & continuous optimization Integration into machine learning methods** 



#### Perspectives

Many new possibilites More applications

#### **Conclusion and perspectives**

Higra : Hierarchical Graph Analysis



**Open source library Python front-end** C++ back-end



A lot of hierarchical analysis methods **Operate on sparse graphs** 

**Specialized functions for images** 

| 🕷 Higra                      | Python notebooks                                                  |           |   |   |
|------------------------------|-------------------------------------------------------------------|-----------|---|---|
| latest                       | r ymon noteboons                                                  |           |   |   |
| rch docs                     | The following python notebooks contain examples demonstrating Hig | ra usage. |   |   |
| ORMATIONS                    | Hierarchy filtering                                               | æ         | B | 6 |
| ngelog                       |                                                                   |           | - |   |
| allation                     | Watershed hierarchies                                             | Ø         |   |   |
| eloping c++ extensions       | Connected image filtering with component trees                    | ٩         |   | ( |
| bleshooting                  | Computing a saliency map with the shaping framework               | ٩         | 8 | ( |
| DAMENTALS                    | Filtering with non-increasing criterion - The shaping framework   | ٩         |   | ( |
| ns                           | Visualizing hierarchical image segmentation                       | æ         |   | 6 |
| ON API                       | Illustrations of SoftwareX 2019 article                           | ٩         |   | 6 |
| rchy core functions          | Illustrations of Pattern Recognition Letters 2019 article         | 3         | B | 2 |
| rchy construction algorithms | Multianla Homeshy Alicement and Cambinstin                        |           | - |   |
| y Assessment                 | Multiscale Hierarchy Alignment and Combination                    | 8         |   |   |
| processing algorithms        | Region Adjacency Graph                                            | ۹         |   |   |
| structures                   | Interactive object segmentation                                   | æ         |   | ( |
| applications                 | Astronomical object detection with the Max-Tree                   | ٩         | 8 | ( |
|                              | Contour Simplification                                            | æ         | B | 1 |
| I the Docs v: latest 🔻       | contour simplification                                            | -         |   |   |

#### \$> pip install higra

https://github.com/higra/Higra



**Easy integration with machine learning libraries Seamless conversion with Numpy** 

Works with deep learning frameworks such as Pytorch