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1. Introduction



Hierarchical representations

> Expectation: iterative decomposition of the space

Image Hierarchy of partitions



Hierarchical representation

> Reality: imperfect representation

> (Lower) Expectation: interesting elements are somewhere there and
easier to find than in raw pixel data

Hierarchy from a state-of-the-art method
in computer vision



Classic processing scheme

1. Compute relevant features in tree space

2. Process this new structured space

Tree: relation of inclusion
between regions

Dendrogram

oo 2

2.3, ..] L

[96,..]1 |[44,.] |[38 .1 | 1.7, ..] F
o & . P
Node features: Filtering,
hand-crafted, learned optimisation,

classification

In the tree space :

» Higher level features
» Efficient algorithms




Hierarchies of segmentations

Dendrogram Saliency Map / Ultrametric distance
e Vertex weighted tree * Edge weighted graph
* Fast access to scale relation between regions * Visualization
« “Combinatorial” algorithms * “Numeric” algorithms
altitude o n3 Quasi-flat zone hierarchy
3

(=Single linkage clustering)
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Example

Interactive segmentation ®
P> Two markers
B: background marker
F: foreground marker
> Object https://perso.esiee.fr/~perretb/ISeg/

The largest regions of the hierarchy that intersect B but do not touch F

woe i | it

Foreground Background Bottom-up propagation Top-down propagation


https://perso.esiee.fr/~perretb/ISeg/

Motivations
Challenges

> Optimal hierarchies:
Definitions and algorithms

> Machine learning and hierarchies:
Continuous optimization scheme

> Flexible topological regularization
Link with topological persistence
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2. Hierarchical watersheds
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From clustering to hierarchical clustering?

’ Clustering/cut algorithm

Implicit or explicit scale parameter

> Do we get a hierarchy when the scale parameter varies?
In most cases: no

For watershed cuts: YES

> Scale-wise optimal hierarchies
Watershed hierarchies

23/11/2021 11



Minima of an edge weighted graphs

A minima of the graph G is a subgraph G’ = (V’/, E’) such that:
e (G’ is connected;
e (G’ has a constant weight: Jk,Ve € E',w(e) = k; and

e all edges surrounding G’ have a weight greater than k: V{x,y} €
E.xe E' y¢ E wle) >k.

. 3 minima in red,
Y 3 reen and blue
9 @-@ B8

23/11/2021




Watershed and Minimum spanning forest

A subgraph G* = (V, E*) is a minimum spanning forest rooted in the
minima of G if:

s.t. each connected component of (V, E’) contains one minimum of G

6 () Cousty et al. IEEE TPAMI 2009

5 4 Minimum spanning
------ g h forest: yellow edges

7/‘ 2 6 Induced watershed
3 3|  cut: dashed edges

23/11/2021
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Watershed — example

Watersheds usually over-segment images
Filter minima whose measure is below a given threshold

Image Gradient Watershed Watershed after applying
(edge weights) an area filter of size 1000

to the gradient
23/11/2021 14



Hierarchical Watershed - idea

Watersheds usually over-segment images
Filter minima whose measure is below a given threshold

Connected filter: Give the importance of a minimum: Ranks the minima according

do not create or size, depth, volume... of the associated to the measure
move contours catchement bassin

Varying the threshold produces a sequence of fine to coarse partitions
We call it a Watershed Hierarchy

23/11/2021
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Hierarchical Watershed - formalization

Given a sequence of minima S = (Mi,Ms,...,M,) of G, a hierar-
chical watershed of G for S is a sequence of nested watersheds W.S;,

1 = 1...n such that WS, is induced by a minimum spanning forest
rooted in {Ml, oo M}

Watershed hierarchy for the sequence (@, ©, @)

23/11/2021
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)

, 3 In natural image analysis:
fo) Origindl result close to the state of the art methods
but 10x faster

(c) WS-Dynamics (d) WS-Area

Images
Perret et al. TIP 2018

3D models

Philipp-Foliguet et al. PR 2011
23/11/2021 17
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3. Ultrametric fitting
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Ultrametric fitting - motivation

D> Continuous optimization of hierarchical cost functions
» Flexible cost functions

P> Integration with other machine learning methods

a 2 b 6 c 6 d
1 5 5 4
2 6 5
f g h
y )
2 6 7 5
i S J ! k 3 |
8 7 3 3
m 6 n 5 (0} 3 p
Input: Undirected graph Input: Hierarchical cost Output: Best hierarchy
with dissimilarity edge function given as a saliency map
weights

Associated publication: Chierchia and Perret NeurlPS 2019, Chierchia and Perret JSMTE 2020
23/11/2021 19



Ultrametric fitting — Optimization problem

> Constrained optimization problem over a continuous
domain

minimize J(u;w) s.t. wu is a saliency map
ue W

t T~
Set of edge Hierarchical cost Input dissimilarity
weights function (edge weights)

> u is a saliency map

(VC e C,¥e e C) u(e) < max u(e')
~ ereC\{e}

Set of cycles of the graph
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Ultrametric fitting — Optimization problem

> Reformulation with an implicit constraint

minimize J(Pg(w): w
weW ( g(u) u,)

> Where Pg is the subdominant ultrametric operator

(Vw € W,Ve,, € L) O (w)(eyy) = min max w(c)

PEPyy e'€eP

> Optimization with a gradient descent algorithm

21



Ultrametric fitting — Cost functions

Closest ultrametric: data fidelity term J_; ...,
L2 loss between the input edge weights and the saliency map

’ Cluster size: regularization Jg; ..
Penalize small clusters close to the root

> Triplet loss: semi-supervision Ji,ipict
Decrease intra-cluster distance, increase inter-cluster distance

> Dasgupta’s loss Jpasgupta
Relaxation of a famous hierarchical loss (NP-hard)

22



Ultrametric fitting — Examples

Jclosest

Jclosest + Jsize

i

Jclosest + Jt'riplet

JDasgupta
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Ultrametric fitting — Supervised hierarchical segmentation

> Structured end-to-end deep learning of hierarchical segmentation
®; can be a seen as an “Ultrametric” layer

-~

Ultrametric network

Deep
™™ network |
‘rdl.

qutgraph

Ultrametric

layer

A

—)yl_

~

~

Ultrametric network
optimization

[iiin

Hierarchical

clustering/

>K Ultrametric loss w*— Vi

b

Ground 1ru1h/
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Ultrametric fitting — Supervised hierarchical clustering

> Simulated dataset
3D human model

Image Silhouette Members Hierarchy

\ )\
i




Ultrametric fitting — Supervised hierarchical clustering

’ Results after training
Image Without Ultrametric Layer With Ultrametric Layer

26
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4. Component tree loss function
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Component tree loss function - motivation

> Component trees: max/min-trees

> Classical representation in mathematical morphology

> Differentiable loss function based on component tree

23/11/2021 Perret & Cousty. Component Tree Loss Function: Definition and Optimization 2021

28



Component tree loss function — Max-tree

> Hierarchy of the level sets’ connected components

(%

The nodes Ci,- .., C4 are associated to
the altitude vector a = [0, 1, 2, 3]

29



Max-tree — Altitudes

> Jacobian of the node altitudes

o _
of

[]lpar(’vl)v Tt ]lpar(’vn)}

e par(v) is the parent of the node v

e 1, is the column vector equals to 1 in position k and 0 elsewhere

Jacobian
fi £ f35 £ £
f=10,0,2,2,1,3] a, /1 1 0 0 0
a|l 0 0 0 0 1
a— [0,1,2,3] as | 0 0 1 1 0
aas \0 O 0 0 O

_—0 O O
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Component tree loss function — Maxima Loss

> Select the k most interesting maxima
Measure of importance: im

> Reinforce selected maxima, remove others
Measure of saliency: sm
Must be a function of the max-tree node altitudes

i<k
Jr(sm,im; k) = Z max(m — smy.,0) + Z sm,.,
i=1 i=k+1

with r = argsort(im),

31



Max tree — Maxima importance

> Extinction values
How long does a maxima survive during a filtering process?
The filtering can be based on depth, area, volume
The higher the value the more important it is

Dynamics

32



Max tree — Maxima saliency

> Saliency Measure : Dynamics

Dynamics

/ Increased saliency

Decreased saliency
33



Component tree loss function — Topological Persistence

> Topological loss function based on barcode diagrams
> Dynamics < Topological persistence

JAGyn(f), dynll), )

Ranking by dynamics r
{ \

Dynamics Barcode diagram of

34
connected components



Component tree loss function — Toy Example 1

O ptimization of J,.(sm, im; 2)

vol

35



Component tree loss function — Toy Example 2

Combining different loss terms for image filtering

If — ¥l + AJr(dyn(f), dyn(f), 1) + Ao VE|[3

36



Component tree loss function — Marker proposal

} Context of interactive segmentation
} Propose interesting markers for the user

Small number of maxima

Image
———p<:jRegu1arization Functions
s’
_|_ — =
. Fuzzy-marker-based
- . —
_ Segmentation
S ti Object and Segmentation
n Lrder (el el Background markers loss
network
Qutput
. Segmentation
Object g
Location cue

Fonseca et al. SIBGRAPI 2021
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Component tree loss function — Marker proposal

38
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5. Conclusion and Perspectives

39



Conclusion and perspectives

Summary

> Optimal hierarchies
Combinatorial & continuous optimization
Integration into machine learning methods

D> Perspectives
Many new possibilites
More applications

40



Conclusion and perspectives

Python notebooks

The following python notebooks contain examples demonstrating Higra usage.

Hierarchy filtering
. . . .
[]
Higra : Hierarchical Graph Analysis
(]
Connecte: d image filtering with component trees @
Computing a saliency map with the shaping framework @

Filtering with non-increasing criterion - The shaping framework
Visualizing hierarchical image segmentation

lllustrations of SoftwareX 2019 article

> Open source library
Python front-end
C++ back-end

Illustrations of Pattern Recognition Letters 2019 article

Multiscale Hierarchy Alignment and Combination

Region Adjacency Graph

Interactive object segmentation

stronomical object detection with the Max-Tree @

ODDODDODDODDODODOCDDODODODTLODOD

> A lot of hierarchical analysis methods

Operate on sparse graphs $> pip install higra

Specialized functions for images https://github.com/higra/Higra

> Easy integration with machine learning libraries
Seamless conversion with Numpy
Works with deep learning frameworks such as Pytorch

Associated publications: Perret et al. SoftwareX 2019 41



https://github.com/higra/Higra

