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Statistical anatomical models

Statistical models
• represent organ shapes and intensity distributions by a
few number of parameters;

• have important roles in medical image analysis, for
example,

• segmentation,
• super-resolution,
• modality transform, etc.

Liver shape variations

Model 1 Model 2
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Statistical modeling of blood vessels

• Less study on modeling blood vessels has been made,
compared to solid organs such as livers, as the shapes
and the intensity distributions are highly complex.

• There are more variations with respect to the intensities,
directions, sizes, etc.

Pulmonary CT image

3D volume patches (9× 9× 9) 2



Various studies on modeling of blood vessels

1. Geometrical profile model
• based on cylinder whose cross sections are ellipses

2. Statistical intensity model
• Principal component analysis (PCA)

- incompatible with non-linear distributions
• Manifold learning

- incompatible with complex distributions
• Deep learning

• Stacked AudoEncoder (SAE)
• Variational AutoEncoders (VAE)
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VAE (previous work) and the problem

Volume patches containing a blood vessel are modeled based
on VAEs.

Input Reconstruction

Problem
The model fails to represent anatomical features of blood
vessels: missing a bifurcation.
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Loss function of β-VAE and its limitation

Given a volume patch x(i) and its reconstruction y(i), the loss
function of β-VAE is defined by

Lβ-VAE = −β
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where µ(i) and σ(i) are the mean and variance of the latent
space variables, computed from the training data and x(i).

1. Regularization: approximated by Gaussian distribution
2. Reconstruction error

Problem
Impossible to consider global topological features!
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Objective

Objective
Building a statistical intensity model of pulmonary
vasculatures in CT volume patches that incorporates
topological priors.

More precisely, topologically correct modeling of blood vessels,
which allows to represent bifurcations.
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Proposed method

Summary:

• Use a conventional network of β-VAE (Saeki et al., 2019),
whose loss function is

Lβ-VAE

Pre-training

• Topological Loss (Clough et al., 2020) is used for topology
of blood vessels.

• Make use of differentiability of Persistent Homology
(Zomorodian et al., 2005).

• Design the model such that the reconstructions meet
topological priors, whose loss function is defined by

L = Lβ-VAE+Ltopo

Fine tuning
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Persistent Homology (PH)

PH enables to quantify topological features of gray images.
• Gray image and its thresholded images

• Convert a gray image to a simplicial (cubical) complex.

• Calculate its PH (persistent barcode and diagram).
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Topological loss function (Clough et al., 2020)

Assuming that the first β∗
k long bars are the “correct” ones

(topological prior), the topological loss function is defined by

Ltopo(β
⋆
0 , β

⋆
1 , β

⋆
2 ) =

∑
k∈{0,1,2}
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)
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k +1
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where λ∗
k and λk are weights.

• Elements to conserve: move to (0, 1).

• Elements to eliminate: move to the diagonal line.
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Topological prior Ltopo(1, 0, 0)

Setting (β∗
0 , β

∗
1 , β

∗
2 ) = (1, 0, 0) favors one connected component.

Input Ideal reconstruction
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Topological priors L□
topo(1, 1, 1) and L□

topo(1, 2, 1)

In order to distinguish a single tube and a bifurcation
structure, we consider the padded volume patches with a
one-voxel border of value 1 and set

• (β∗
0 , β

∗
1 , β

∗
2 ) = (1, 1, 1) for a single tube structure,

• (β∗
0 , β

∗
1 , β

∗
2 ) = (1, 2, 1) for a single bifurcation structure.

Without bifurcation: Betti numbers (1, 1, 1)

With bifurcation: Betti numbers (1, 2, 1)
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Experiment: blood vessels with hole artifacts

The network was pre-trained with only the β-VAE loss and
fine-tuned by adding the topological prior of one connected
component Ltopo(1, 0, 0).

• Datasets: artificial volume patches (size 9× 9× 9) of
blood vessels with hole artifacts are generated; 6000, 2000
and 2000 are used for training, validation and testing.

• Other setting: the latent dimensions J = 6; the weights of
the loss function β = 0.1, λ∗

k = λk = 60000.
• Evaluation strategies:

• for intensity, generalization and specificity (Styner, 2003)
were used,

• for topology, the topological loss function with λ∗
k = λk = 1

was used.
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Experiment: blood vessels with hole artifacts (results)

Given original volume patches without/with hole, compare its
reconstruction without/with topological prior (Pre/Fine), and with
the multiscale version (Erosion).

Evaluations
Generalization Specificity Topology

Pre 0.00251 0.0134 0.430
Fine 0.00478 0.0143 0.0976
Fine + Erosion 0.00728 0.0156 0.00139 13



Experiment: blood vessels with bifurcations

The network was pre-trained with only the β-VAE loss and fine-tuned
by adding topological prior of bifurcation case L□

topo(1, 2, 1).

Dataset: volume patches of Y-shaped blood vessel
• CT images taken at Tokushima University Hospital (47 cases)

• thickness is approximately from 1 to 4 mm

• blood vessels are located between hilar and peripheral regions

• patches of size 9× 9× 9 are extracted
• after applying Hessian filter,
• around local maximum of voxel values,
• s.t. the PHs must be close to the topological prior.

1533, 517 and 517 volume
patches are used for training,
validation and testing.

Sagittal sections of

25 volume patches
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Experiment: blood vessels with bifurcations (cont.)

• Other setting: The latent dimensions J = 22; The weights
of the loss function β = 0.1 and λ∗

k = λk = 50.
• Evaluation strategies:

• for intensity, generalization and specificity (Styner, 2003)
were used,

• for topology, the Bottleneck distance between the PDs of
the original and reconstructed images was used.
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Experiment: blood vessels with bifurcations (results)

Given an original volume containing a bifurcation, compare its
reconstruction without/with topological prior (Pre/Fine).

Original Pre. Fine

Evaluations
Generalization Specificity Bottleneck distance

Pre 0.00704 0.0283 0.288
Fine 0.0102 0.0410 0.236 16



Conclusions and Perspectives

Conclusions
• In order to incorporate topological priors of bifurcations
into statistical modeling, we integrated topological loss
into the deep generative model (β-VAE).

• Topological evaluation of reconstructed images was
improved, and the improvement was also qualitatively
identified.

Perspectives
• How to guarantee topological prior?
• Apply the model to other tasks such as segmentation and
super-resolution.
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