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Sampled surfaces
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Sampled surfaces
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Local Shape Analysis

» Surface normals
» Surface Curvatures

» Curvature lines

[Ohtake et al. 2004]

Estimation

Need to estimate differential quantities on sampled surfaces.
= Can be irregularly sampled, noisy, missing data.
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Curvature Estimation
On point sets:
» Osculating Jets [Cazals 03], Wavejets [Béarzi 2018]
» Voronoi Curvature Measure [Mérigot 10]
» Curvature tensor estimation [Kalogerakis 07,09]
On meshes
» Curvature and Curvature derivatives estimation [Rusinkiewicz03]
» Normal Cycles [Morvan, Cohen-Steiner 03]
» Laplace Beltrami discretization [Meyer02, Wardetzky07, Vallet08]

Per point/vertex computation
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Tangent Vector Fields

Goal

Compute a smooth tangent vector field with user-prescribed constraints
optimizing some regularity criterion.

» N-symmetry direction fields [Ray 08]

» Equivalent to a Riemannian metric design problem [Lai 10]

» Smoothness constraints [Cranel0,Knoppell3], symmetry constraints
[Panozzol4]

More global methods: permit to constrain directions from a global point of view.
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Higher order Information?

» Curvature derivatives: helps finding suggestive contours [Rusinkiewicz 03]

In this talk

Can we define principal directions of higher order, and would they reveal
something on the surface?
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Assumptions
Underlying surface S:

» S can locally be expressed as a height field over a planar parameterization in
neighborhoods of fixed radius r

» S is smooth, C*°

Discretization
» Sampling condition: r-neighborhood of a seed containing enough points.

» Noise level: Noise magnitude strictly below radius r.
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Local surface representation
Height-fields

» Height-field over a plane:

p(x,y,h=f(x,y))

» Taylor expansion at (0,0)
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A small detour by symmetric tensors

Def. symmetric tensor

A m-dimensional symmetric tensor T of order k is a m-dimensional array such
that given index | = (ij)je[o,m], for any permutation p on I, T = T,

» m=2letv=(x,y), T =(Tx, T,) symmetric tensor of order k, then
Tv=xT +yT,.

» Tvis a symmetric tensor of order k — 1

» T is the result of contracting T by v j times.
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E-eigenvalues of symmetric tensors

Eigenvalues [Qi 2005,2006,2007]

Given T a symmetric tensor of order k, if there exists A € C and a vector v € R?

such that: o
Tve—" = Av
(T 2 1)

Then ) is called an E-eigenvalue of T and v is called an E-eigenvector of T.
The set of \ satisfying (1) are the roots of a polynomial called the
E-characteristic polynomial.

Disclaimer

Nomenclatura: Supermatrix [Qi] or Tensor.
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Arbitrary order differential tensor

Differential tensor

f defined on R? with values in R. T is a symmetric tensor of order k, where
coefficients are as follows: let xg = x,x; =y,
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Writing f with T
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Tensor differentiation

Expansion

Differentiating a symmetric tensor of order k, T(v) wrt a vector v yields a
symmetric tensor of order k + 1

Lemma

Let T be a symmetric tensor. Let v = (x,y)" € R? be a vector.

AT vk
ov

— kTvk ! (4)
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Eigenvectors

Theorem

Given v = (x,y), Tk a real symmetric tensor of order k > 1 representing the
derivatives of order k of a smooth function f in C¥, the set of vectors
v = (x,y) = (rcos0,rsinf) such that & T,v* =0 and ||v|| =1 are
E-eigenvectors of Tk:
Twvk—t = v T, vk
5
L= &
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Sketch of the proof

» Show that %Tkvk = éTkv

k
» Show that T,vk—1 = Rh’z v

» Since ||v|| = 1 and by setting A = T, v, we get Tovk—! = Av.
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Expressing T in the Wavejets basis

» Switching to polar coordinates v = (x,y) = (rcos@, rsinf)
» Wavejets Basis definition: [Béarzi Digne Chaine 18]
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Wavejets Basis [Béarzi et al. 2018]

Bo.o

Bii+Bi,—1
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Consequence

Corollary

Given v = (x, y), the directions of the E-eigenvectors of a tensor T of order k
can be retrieved out of the Wavejet decomposition of T,v* by looking at the

zeros of:
k

k
% Z ¢k,nein9 _ Z in¢k7nein9 (6)

n=—k n=—k

Principal directions

For any order k we can extract eigenvectors of the k' order symmetric tensor
corresponding to the k" order differential tensor
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Maximum and Minimum Arbitrary Order Principal
Directions

Definition
Maximum principal directions (resp. minimum principal directions) are defined as
local maxima (resp. local minima) of

Tyvk
no _ Tk
Z ¢k"e Kklrk

n=—k

with v = (rcos @, rsin ).
The corresponding eigenvalues are given by: A\ = klgk(6p) with 6y the angle
corresponding to a maximum or minimum principal direction.
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Order 2 Principal directions (aka Curvature principal
directions)

» Principal curvatures:

K1 =2(¢2,0 + P22+ ¢2,—2) and ky =2 (o0 — P22 — ¢2,—2) (7)

> D ocn<o ¢27,,e""9 + (1527_,167""9 has 2 maxima aligned with the principal
n even
directions
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Higher order principal directions

Order 3

> > <303..6 + @3 _,e7 " has at most 3 maxima (either 1 or 3)
n odd

Order 3 maxima directions
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Synthetic Examples

Two synthetic surfaces with relevant principal directions of order 3 and order 8.
Other orders vanish and exhibit no principal directions.
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Synthetic Examples

Order 3 principal directions on a synthetic surface controlled by its Wavejets
coefficients.
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Properties of order k directions

P If k is even: if Ay corresponds to a maximum principal direction, 6y + 7 also
corresponds to a maximum principal direction.

» If k is odd: if Oy corresponds to a maximum principal direction, 6y + 7
corresponds to a minimum principal direction.

» At most 2k principal directions of order k (roots of a real polynomial of
order 2k)

» Regularity: Order k principal directions are regular iff ¢, , = 0 fo n # £k.
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Practical computation: Truncating the Taylor

Expansion
Osculating Jets [Cazals03]

» Surface parameterized w.r.t. P(p) Not necessarily equal to 7 (p) (tangent
plane)

Truncated Taylor expansion

S surface locally homeomorphic to a disk in a small neighborhood around a point
p, expressed as f(x, y) over a plane P(p) passing through p. The neighborhood
of p can be expressed as a truncated Taylor Expansion at order K:

P> X(k’y’ﬁ Xy (8)

K
where ka—jyj = axkaffayj
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Practical computation: Truncation order

Accuracy theorem [Cazals03]

Given a Taylor expansion of order K in a neighborhood of radius r, the precision
of all k order derivatives is o(r—%).

» In practice: Computation of the
coefficients at each vertex or point
by linear system solve.

[Cazals 2003]
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Practical computation
Wavejets

The Wavejets expansion can be truncated similarly to the Osculating Jets
expansion.

022 [03.1] [03.3] 04,2 [04.4]
> (ry, 00, hg),;e[[l,,\,]] . local coordinates around p(0, 0)
Bo,o(r1,01)  Bi,_1(r1,01)  Bya(r, 01) By ,k(r1, 01) (:)0‘0 hy
By,o(r2, 02) B1,_1(r2, 62) By 1(r2, 02) By k(r2: 02) (1)1711 hy
% .
Bo,o(rn,> On)  Bi,—1(ry, On)  Bralry, Op) Bk, k(rn» On) bK.K hy
. ——
M @ H

» Solve using QR decomposition
argmin||M® — H||?
0]
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Properties

» Adding a weight depending on the distance of the neighbor to p
P If the weight is smooth and radially decreasing:

» (% regression yields smooth coefficients [Levin15]....
» ¢! no such guarantee.
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Results

Noisy

normals ©0,0 |$1,1] ®2,0 |92.2] |¢3.1] |¢3,3]
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Experiments

Order 2 (top) and 3 (bottom) principal directions on a surface evolving from a
ridge (left) to a smooth T-junction (right). 30726
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Orders2to 7
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Orders 2 and 3
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With noise

Principal directions of order 2 and 3 computed on a cube with added Gaussian
noise on the positions. Top: Noiseless, o = 0.01%; Bottom: o = 0.05% and
oc=0.1%
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Dependency on the radius

Estimation with r = 50, 80, 100, 200.
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Limitations

» Parameters: radius r, truncation order K

» Distribution of the principal directions of a given order are not arbitrary!

Introduction 39/46



Disclaimer

Likely crash due to the demo effect.

Applications - Work in Progress 41/46



Application: Line tracking

» Follow a line and increase order when lowest order becomes meaningless
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Application: Shape registration

» When a higher order with a least three principal directions becomes
meaningful, the point can be well localized

P> Rigid transform with a single point and its direction field.
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Conclusion

» Extension of principal directions to any differential order
» Easy computation in the Wavejets basis
» Application to geometry processing, and more to explore
References:
» Arbitrary order principal directions and how to compute them, J. Digne, S.
Valette, R. Chaine, Y. Béarzi, Preprint Nov. 2021 ArXiv Preprint 2111.05800

» Wavejets: A Local Frequency Framework for Shape Details Amplification, Y.
Béarzi, J. Digne, R. Chaine 2018.
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