## New tools for surface analysis

Julie Digne<br>Joint work with Sébastien Valette, Raphaëlle Chaine and Yohann Béarzi

LIRIS - CNRS / Univ. Lyon



Journées du GT GDMM - 16/11/2021

## Sampled surfaces



Musée de Lyon Fourvière, LIRIS, projet PAPS

## Sampled surfaces



## Local Shape Analysis

- Surface normals
- Surface Curvatures
- Curvature lines



## Estimation

Need to estimate differential quantities on sampled surfaces. $\Rightarrow$ Can be irregularly sampled, noisy, missing data.

## Curvature Estimation

On point sets:

- Osculating Jets [Cazals 03], Wavejets [Béarzi 2018]
- Voronoi Curvature Measure [Mérigot 10]
- Curvature tensor estimation [Kalogerakis 07,09]

On meshes

- Curvature and Curvature derivatives estimation [Rusinkiewicz03]
- Normal Cycles [Morvan, Cohen-Steiner 03]
- Laplace Beltrami discretization [Meyer02, Wardetzky07, Vallet08]


Per point/vertex computation

## Tangent Vector Fields

## Goal

Compute a smooth tangent vector field with user-prescribed constraints optimizing some regularity criterion.

- N-symmetry direction fields [Ray 08]
- Equivalent to a Riemannian metric design problem [Lai 10]
- Smoothness constraints [Crane10,Knoppel13], symmetry constraints [Panozzo14]

More global methods: permit to constrain directions from a global point of view.

## Higher order Information?

- Curvature derivatives: helps finding suggestive contours [Rusinkiewicz 03]


## In this talk

Can we define principal directions of higher order, and would they reveal something on the surface?

## Assumptions

## Underlying surface $S$ :

- $S$ can locally be expressed as a height field over a planar parameterization in neighborhoods of fixed radius $r$
- $S$ is smooth, $\mathcal{C}^{\infty}$


## Discretization

- Sampling condition: r-neighborhood of a seed containing enough points.
- Noise level: Noise magnitude strictly below radius $r$.



## Local surface representation

## Height-fields

- Height-field over a plane:

$$
\boldsymbol{p}(x, y, h=f(x, y))
$$

- Taylor expansion at $(0,0)$

$$
f(x, y)=\sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{1}{(k-i)!i!} \frac{\partial^{k} f}{\partial x^{i} \partial y^{k-i}}(0,0) x^{i} y^{k-i}
$$



## A small detour by symmetric tensors

## Def. symmetric tensor

A m-dimensional symmetric tensor $T$ of order $k$ is a $m$-dimensional array such that given index $I=\left(i_{j}\right)_{j \in \llbracket 0, m \rrbracket}$, for any permutation $p$ on $I, T_{I}=T_{p(I)}$

- $m=2$ let $v=(x, y), T=\left(T_{x}, T_{y}\right)$ symmetric tensor of order $k$, then $T v=x T_{x}+y T_{y}$.
- $T v$ is a symmetric tensor of order $k-1$
- $T v^{j}$ is the result of contracting $T$ by $v j$ times.


## E-eigenvalues of symmetric tensors

## Eigenvalues [Qi 2005,2006,2007]

Given $T$ a symmetric tensor of order $k$, if there exists $\lambda \in \mathbb{C}$ and a vector $v \in \mathbb{R}^{2}$ such that:

$$
\left\{\begin{array}{ccc}
T \boldsymbol{v}^{k-1} & = & \lambda \boldsymbol{v}  \tag{1}\\
\boldsymbol{v}^{T} \boldsymbol{v} & = & 1
\end{array}\right.
$$

Then $\lambda$ is called an $E$-eigenvalue of $T$ and $\boldsymbol{v}$ is called an $E$-eigenvector of $T$. The set of $\lambda$ satisfying (1) are the roots of a polynomial called the E-characteristic polynomial.

## Disclaimer

Nomenclatura: Supermatrix [Qi] or Tensor.

## Arbitrary order differential tensor

## Differential tensor

$f$ defined on $\mathbb{R}^{2}$ with values in $\mathbb{R}$. $T_{k}$ is a symmetric tensor of order $k$, where coefficients are as follows: let $x_{0}=x, x_{1}=y$,

$$
\begin{equation*}
\left(T_{k}\right)_{\left(i_{0}, \ldots, i_{k}\right)}=\frac{\partial^{k} f}{\partial x_{i_{0}} \ldots \partial x_{i_{k}}}(0,0) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
T_{k} \boldsymbol{v}^{k}=\sum_{i=0}^{k}\binom{k}{i} \frac{\partial^{k} f}{\partial^{i} x \partial^{k-i} y}(0,0) x^{i} y^{k-i} \tag{3}
\end{equation*}
$$

Writing $f$ with $T_{k}$

$$
f(\boldsymbol{v})=\sum_{k=0}^{\infty} \frac{1}{k!} T_{k} \boldsymbol{v}^{k}+o\left(\|\boldsymbol{v}\|^{K}\right)
$$

## Tensor differentiation

## Expansion

Differentiating a symmetric tensor of order $k, T(v)$ wrt a vector $v$ yields a symmetric tensor of order $k+1$

## Lemma

Let $T$ be a symmetric tensor. Let $\boldsymbol{v}=(x, y)^{T} \in \mathbb{R}^{2}$ be a vector.

$$
\begin{equation*}
\frac{\partial T \boldsymbol{v}^{k}}{\partial \boldsymbol{v}}=k T \boldsymbol{v}^{k-1} \tag{4}
\end{equation*}
$$

## Eigenvectors

## Theorem

Given $\boldsymbol{v}=(x, y), T_{k}$ a real symmetric tensor of order $k>1$ representing the derivatives of order $k$ of a smooth function $f$ in $\mathcal{C}^{k}$, the set of vectors $\boldsymbol{v}=(x, y)=(r \cos \theta, r \sin \theta)$ such that $\frac{\partial}{\partial \theta} T_{k} \boldsymbol{v}^{k}=0$ and $\|\boldsymbol{v}\|=1$ are $E$-eigenvectors of $T_{k}$ :

$$
\left\{\begin{array}{l}
T_{k} \boldsymbol{v}^{k-1}=\boldsymbol{v} T_{k} \boldsymbol{v}^{k}  \tag{5}\\
\|\boldsymbol{v}\|=1
\end{array}\right.
$$

## Sketch of the proof

- Show that $\frac{\partial}{\partial r} T_{k} \boldsymbol{v}^{k}=\frac{k}{r} T_{k} \boldsymbol{v}$
- Show that $T_{k} \boldsymbol{v}^{k-1}=\frac{T_{k} k^{k}}{\|v\|^{2}} \boldsymbol{v}$
- Since $\|v\|=1$ and by setting $\lambda=T_{k} \boldsymbol{v}^{k}$, we get $T_{k} \boldsymbol{v}^{k-1}=\lambda \boldsymbol{v}$.


## Expressing $T$ in the Wavejets basis

- Switching to polar coordinates $\boldsymbol{v}=(x, y)=(r \cos \theta, r \sin \theta)$
- Wavejets Basis definition: [Béarzi Digne Chaine 18]

$$
f(r, \theta)=\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} B_{k, n}(r, \theta)=\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} r^{k} e^{i n \theta}
$$

## Wavejets Basis [Béarzi et al. 2018]


$B_{0,0}$
$B_{2,0}$

$B_{1,1}+B_{1,-1}$


## Consequence

## Corollary

Given $\boldsymbol{v}=(x, y)$, the directions of the $E$-eigenvectors of a tensor $T_{k}$ of order $k$ can be retrieved out of the Wavejet decomposition of $T_{k} \boldsymbol{v}^{k}$ by looking at the zeros of:

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \sum_{n=-k}^{k} \phi_{k, n} e^{i n \theta}=\sum_{n=-k}^{k} i n \phi_{k, n} e^{i n \theta} \tag{6}
\end{equation*}
$$

## Principal directions

For any order $k$ we can extract eigenvectors of the $k^{\text {th }}$ order symmetric tensor corresponding to the $k^{\text {th }}$ order differential tensor

## Maximum and Minimum Arbitrary Order Principal Directions

## Definition

Maximum principal directions (resp. minimum principal directions) are defined as local maxima (resp. local minima) of

$$
g_{k}(\theta)=\sum_{n=-k}^{k} \phi_{k, n} e^{i n \theta}=\frac{T_{k} \mathbf{v}^{k}}{k!r^{k}}
$$

with $\mathbf{v}=(r \cos \theta, r \sin \theta)$.
The corresponding eigenvalues are given by: $\lambda=k!g_{k}\left(\theta_{0}\right)$ with $\theta_{0}$ the angle corresponding to a maximum or minimum principal direction.

## Order 2 Principal directions (aka Curvature principal directions)

- Principal curvatures:

$$
\begin{equation*}
\kappa_{1}=2\left(\phi_{2,0}+\phi_{2,2}+\phi_{2,-2}\right) \text { and } \kappa_{2}=2\left(\phi_{2,0}-\phi_{2,2}-\phi_{2,-2}\right) \tag{7}
\end{equation*}
$$

$-\sum_{\substack{-2 \leq n \leq 2 \\ n \\ \text { even }}} \phi_{2, n} e^{i n \theta}+\phi_{2,-n} e^{-i n \theta}$ has 2 maxima aligned with the principal directions


## Higher order principal directions

## Order 3

$-\sum_{\substack{n \leq 3 \\ n \text { odd }}} \phi_{3, n} e^{i n \theta}+\phi_{3,-n} e^{-i n \theta}$ has at most 3 maxima (either 1 or 3 )


Order 3 maxima directions

## Synthetic Examples



Two synthetic surfaces with relevant principal directions of order 3 and order 8 . Other orders vanish and exhibit no principal directions.

## Synthetic Examples



Order 3 principal directions on a synthetic surface controlled by its Wavejets coefficients.

## Properties of order $k$ directions

- If $k$ is even: if $\theta_{0}$ corresponds to a maximum principal direction, $\theta_{0}+\pi$ also corresponds to a maximum principal direction.
- If $k$ is odd: if $\theta_{0}$ corresponds to a maximum principal direction, $\theta_{0}+\pi$ corresponds to a minimum principal direction.
- At most $2 k$ principal directions of order $k$ (roots of a real polynomial of order $2 k$ )
- Regularity: Order $k$ principal directions are regular iff $\phi_{k, n}=0$ fo $n \neq \pm k$.


## Practical computation: Truncating the Taylor Expansion <br> ```Osculating Jets [Cazals03]```

- Surface parameterized w.r.t. $\mathcal{P}(p)$ Not necessarily equal to $\mathcal{T}(p)$ (tangent plane)


## Truncated Taylor expansion

$\mathcal{S}$ surface locally homeomorphic to a disk in a small neighborhood around a point $\boldsymbol{p}$, expressed as $f(x, y)$ over a plane $\mathcal{P}(\boldsymbol{p})$ passing through $\boldsymbol{p}$. The neighborhood of $\boldsymbol{p}$ can be expressed as a truncated Taylor Expansion at order K:

$$
\begin{equation*}
f(x, y)=\sum_{k=0}^{\infty} \sum_{j=0}^{K} \frac{f_{x^{k-j} y^{j}}(0,0)}{(k-j)!j!} x^{k-j} y^{j} \tag{8}
\end{equation*}
$$

where $f_{x^{k-j} y^{j}}=\frac{\partial^{k} f}{\partial x^{k-j} \partial y^{j}}$.

## Practical computation: Truncation order

## Accuracy theorem [Cazals03]

Given a Taylor expansion of order $K$ in a neighborhood of radius $r$, the precision of all $k$ order derivatives is $o\left(r^{K-k}\right)$.


- In practice: Computation of the coefficients at each vertex or point by linear system solve.


## Practical computation

## Wavejets

The Wavejets expansion can be truncated similarly to the Osculating Jets expansion.


- $\left(r_{\ell}, \theta_{\ell}, h_{\ell}\right)_{\ell \in \llbracket 1, N \rrbracket}$ : local coordinates around $\boldsymbol{p}(0,0)$

$$
\underbrace{\left(\begin{array}{ccccc}
B_{0,0}\left(r_{1}, \theta_{1}\right) & B_{1,-1}\left(r_{1}, \theta_{1}\right) & B_{1,1}\left(r_{1}, \theta_{1}\right) & \cdots & B_{K, K}\left(r_{1}, \theta_{1}\right) \\
B_{0}, 0\left(r_{2}, \theta_{2}\right) & B_{1,-1}\left(r_{2}, \theta_{2}\right) & B_{1,1}\left(r_{2}, \theta_{2}\right) & \cdots & B_{K, K}\left(r_{2}, \theta_{2}\right) \\
\vdots & & & & \vdots \\
B_{0,0}\left(r_{N}, \theta_{N}\right) & B_{1,-1}\left(r_{N}, \theta_{N}\right) & B_{1,1}\left(r_{N}, \theta_{N}\right) & \cdots & B_{K, K}\left(r_{N}, \theta_{N}\right)
\end{array}\right)}_{M} \times \underbrace{\left(\begin{array}{c}
\phi_{0,0} \\
\phi_{1,-1} \\
\phi_{1,1} \\
\vdots \\
\vdots \\
\phi_{K, K}
\end{array}\right)}_{\boldsymbol{\Phi}}=\underbrace{\left(\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{N}
\end{array}\right)}_{\boldsymbol{H}}
$$

- Solve using QR decomposition

$$
\underset{\Phi}{\operatorname{argmin}}\|M \Phi-H\|^{2}
$$

## Properties

- Adding a weight depending on the distance of the neighbor to $p$
- If the weight is smooth and radially decreasing:
- $\ell^{2}$ regression yields smooth coefficients [Levin15]....
- $\ell^{1}$ no such guarantee.


## Results



## Experiments



Order 2 (top) and 3 (bottom) principal directions on a surface evolving from a



Orders 2 and 3

## With noise



Principal directions of order 2 and 3 computed on a cube with added Gaussian noise on the positions. Top: Noiseless, $\sigma=0.01 \%$; Bottom: $\sigma=0.05 \%$ and

$$
\sigma=0.1 \%
$$






## Dependency on the radius



Estimation with $r=50,80,100,200$.

## Limitations

- Parameters: radius $r$, truncation order $K$
- Distribution of the principal directions of a given order are not arbitrary!



## Disclaimer

Likely crash due to the demo effect.

## Application: Line tracking

- Follow a line and increase order when lowest order becomes meaningless


## Application: Shape registration

- When a higher order with a least three principal directions becomes meaningful, the point can be well localized
- Rigid transform with a single point and its direction field.




## Conclusion

- Extension of principal directions to any differential order
- Easy computation in the Wavejets basis
- Application to geometry processing, and more to explore References:
- Arbitrary order principal directions and how to compute them, J. Digne, S. Valette, R. Chaine, Y. Béarzi, Preprint Nov. 2021 ArXiv Preprint 2111.05800
- Wavejets: A Local Frequency Framework for Shape Details Amplification, Y. Béarzi, J. Digne, R. Chaine 2018.

