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Sampled surfaces

Musée de Lyon Fourvière, LIRIS, projet PAPS
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Sampled surfaces
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Local Shape Analysis

I Surface normals
I Surface Curvatures
I Curvature lines
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Estimation
Need to estimate differential quantities on sampled surfaces.
⇒ Can be irregularly sampled, noisy, missing data.
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Curvature Estimation
On point sets:
I Osculating Jets [Cazals 03], Wavejets [Béarzi 2018]
I Voronoi Curvature Measure [Mérigot 10]
I Curvature tensor estimation [Kalogerakis 07,09]

On meshes
I Curvature and Curvature derivatives estimation [Rusinkiewicz03]
I Normal Cycles [Morvan, Cohen-Steiner 03]
I Laplace Beltrami discretization [Meyer02, Wardetzky07, Vallet08]

Per point/vertex computation
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Tangent Vector Fields

Goal
Compute a smooth tangent vector field with user-prescribed constraints
optimizing some regularity criterion.

I N-symmetry direction fields [Ray 08]
I Equivalent to a Riemannian metric design problem [Lai 10]
I Smoothness constraints [Crane10,Knoppel13], symmetry constraints

[Panozzo14]

More global methods: permit to constrain directions from a global point of view.
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Higher order Information?

I Curvature derivatives: helps finding suggestive contours [Rusinkiewicz 03]

In this talk
Can we define principal directions of higher order, and would they reveal
something on the surface?
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Assumptions
Underlying surface S:
I S can locally be expressed as a height field over a planar parameterization in

neighborhoods of fixed radius r
I S is smooth, C∞

Discretization
I Sampling condition: r -neighborhood of a seed containing enough points.
I Noise level: Noise magnitude strictly below radius r .
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Local surface representation
Height-fields

I Height-field over a plane:

p(x , y , h = f (x , y))

I Taylor expansion at (0, 0)

f (x , y) =
∞∑

k=0

k∑
i=0

1
(k − i)!i!

∂k f
∂x i∂yk−i (0, 0)x iyk−i

Introduction 9/46



A small detour by symmetric tensors

Def. symmetric tensor
A m-dimensional symmetric tensor T of order k is a m-dimensional array such
that given index I = (ij)j∈J0,mK, for any permutation p on I, TI = Tp(I)

I m = 2 let v = (x , y), T = (Tx ,Ty ) symmetric tensor of order k, then
Tv = xTx + yTy .

I Tv is a symmetric tensor of order k − 1
I Tv j is the result of contracting T by v j times.
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E -eigenvalues of symmetric tensors

Eigenvalues [Qi 2005,2006,2007]
Given T a symmetric tensor of order k, if there exists λ ∈ C and a vector v ∈ R2

such that: {
Tvk−1 = λv
vT v = 1 (1)

Then λ is called an E -eigenvalue of T and v is called an E -eigenvector of T .
The set of λ satisfying (1) are the roots of a polynomial called the
E -characteristic polynomial.

Disclaimer
Nomenclatura: Supermatrix [Qi] or Tensor.
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Arbitrary order differential tensor

Differential tensor
f defined on R2 with values in R. Tk is a symmetric tensor of order k, where
coefficients are as follows: let x0 = x , x1 = y ,

(Tk)(i0,...,ik ) = ∂k f
∂xi0 . . . ∂xik

(0, 0) (2)

Tkvk =
k∑

i=0

(
k
i

)
∂k f

∂ ix∂k−iy (0, 0)x iyk−i (3)

Writing f with Tk

f (v) =
∞∑

k=0

1
k!Tkvk + o(‖v‖K )
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Tensor differentiation

Expansion
Differentiating a symmetric tensor of order k, T (v) wrt a vector v yields a
symmetric tensor of order k + 1

Lemma
Let T be a symmetric tensor. Let v = (x , y)T ∈ R2 be a vector.

∂Tvk

∂v = kTvk−1 (4)
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Eigenvectors

Theorem
Given v = (x , y), Tk a real symmetric tensor of order k > 1 representing the
derivatives of order k of a smooth function f in Ck , the set of vectors
v = (x , y) = (r cos θ, r sin θ) such that ∂

∂θTkvk = 0 and ‖v‖ = 1 are
E-eigenvectors of Tk : {

Tkvk−1 = vTkvk

‖v‖ = 1 (5)
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Sketch of the proof

I Show that ∂
∂r Tkvk = k

r Tkv
I Show that Tkvk−1 = Tk vk

‖v‖2 v
I Since ‖v‖ = 1 and by setting λ = Tkvk , we get Tkvk−1 = λv .
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Expressing T in the Wavejets basis

I Switching to polar coordinates v = (x , y) = (r cos θ, r sin θ)
I Wavejets Basis definition: [Béarzi Digne Chaine 18]

f (r , θ) =
∞∑

k=0

k∑
n=−k

φk,nBk,n(r , θ) =
∞∑

k=0

k∑
n=−k

φk,nr ke inθ
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Wavejets Basis [Béarzi et al. 2018]

B0,0 B2,0 B2,2 + B2,−2

B1,1 + B1,−1 B3,1 + B3,−1 B3,3 + B3,−3
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Consequence

Corollary
Given v = (x , y), the directions of the E -eigenvectors of a tensor Tk of order k
can be retrieved out of the Wavejet decomposition of Tkvk by looking at the
zeros of:

∂

∂θ

k∑
n=−k

φk,ne inθ =
k∑

n=−k
inφk,ne inθ (6)

Principal directions
For any order k we can extract eigenvectors of the k th order symmetric tensor
corresponding to the k th order differential tensor
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Maximum and Minimum Arbitrary Order Principal
Directions

Definition
Maximum principal directions (resp. minimum principal directions) are defined as
local maxima (resp. local minima) of

gk(θ) =
k∑

n=−k
φk,ne inθ = Tkvk

k!r k

with v = (r cos θ, r sin θ).
The corresponding eigenvalues are given by: λ = k!gk(θ0) with θ0 the angle
corresponding to a maximum or minimum principal direction.
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Order 2 Principal directions (aka Curvature principal
directions)

I Principal curvatures:

κ1 = 2 (φ2,0 + φ2,2 + φ2,−2) and κ2 = 2 (φ2,0 − φ2,2 − φ2,−2) (7)

I
∑
−2≤n≤2

n even
φ2,ne inθ + φ2,−ne−inθ has 2 maxima aligned with the principal

directions
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Higher order principal directions

Order 3
I
∑
−n≤3
n odd

φ3,ne inθ + φ3,−ne−inθ has at most 3 maxima (either 1 or 3)

Order 3 maxima directions
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Synthetic Examples

Two synthetic surfaces with relevant principal directions of order 3 and order 8.
Other orders vanish and exhibit no principal directions.
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Synthetic Examples

Order 3 principal directions on a synthetic surface controlled by its Wavejets
coefficients.
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Properties of order k directions

I If k is even: if θ0 corresponds to a maximum principal direction, θ0 + π also
corresponds to a maximum principal direction.

I If k is odd: if θ0 corresponds to a maximum principal direction, θ0 + π
corresponds to a minimum principal direction.

I At most 2k principal directions of order k (roots of a real polynomial of
order 2k)

I Regularity: Order k principal directions are regular iff φk,n = 0 fo n 6= ±k.

Introduction 24/46



Practical computation: Truncating the Taylor
Expansion
Osculating Jets [Cazals03]

I Surface parameterized w.r.t. P(p) Not necessarily equal to T (p) (tangent
plane)

Truncated Taylor expansion
S surface locally homeomorphic to a disk in a small neighborhood around a point
p, expressed as f (x , y) over a plane P(p) passing through p. The neighborhood
of p can be expressed as a truncated Taylor Expansion at order K :

f (x , y) =
∞∑

k=0

K∑
j=0

fxk−j y j (0, 0)
(k − j)!j! xk−jy j (8)

where fxk−j y j = ∂k f
∂xk−j∂y j .
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Practical computation: Truncation order

Accuracy theorem [Cazals03]
Given a Taylor expansion of order K in a neighborhood of radius r , the precision
of all k order derivatives is o(rK−k).
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I In practice: Computation of the
coefficients at each vertex or point
by linear system solve.
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Practical computation
Wavejets
The Wavejets expansion can be truncated similarly to the Osculating Jets
expansion.

I (r`, θ`, h`)`∈J1,NK : local coordinates around p(0, 0)

 B0,0(r1, θ1) B1,−1(r1, θ1) B1,1(r1, θ1) . . . BK,K (r1, θ1)
B0,0(r2, θ2) B1,−1(r2, θ2) B1,1(r2, θ2) . . . BK,K (r2, θ2)

.

.

.
.
.
.

B0,0(rN , θN ) B1,−1(rN , θN ) B1,1(rN , θN ) . . . BK,K (rN , θN )


︸ ︷︷ ︸

M

×


φ0,0
φ1,−1
φ1,1

.

.

.
φK,K


︸ ︷︷ ︸

Φ

=

h1
h2
.
.
.

hN


︸ ︷︷ ︸

H

I Solve using QR decomposition
argmin

Φ
‖MΦ− H‖2
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Properties

I Adding a weight depending on the distance of the neighbor to p
I If the weight is smooth and radially decreasing:

I `2 regression yields smooth coefficients [Levin15]....
I `1 no such guarantee.
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Results

Noisy
normals φ0,0 |φ1,1| φ2,0 |φ2,2| |φ3,1| |φ3,3|
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Experiments

Order 2 (top) and 3 (bottom) principal directions on a surface evolving from a
ridge (left) to a smooth T-junction (right).Introduction 30/46



Orders 2 to 7
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Orders 2 and 3
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With noise

Principal directions of order 2 and 3 computed on a cube with added Gaussian
noise on the positions. Top: Noiseless, σ = 0.01%; Bottom: σ = 0.05% and

σ = 0.1%
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Dependency on the radius

Estimation with r = 50, 80, 100, 200.
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Limitations

I Parameters: radius r , truncation order K
I Distribution of the principal directions of a given order are not arbitrary!
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Disclaimer

Likely crash due to the demo effect.
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Application: Line tracking

I Follow a line and increase order when lowest order becomes meaningless
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Application: Shape registration

I When a higher order with a least three principal directions becomes
meaningful, the point can be well localized

I Rigid transform with a single point and its direction field.
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Conclusion

I Extension of principal directions to any differential order
I Easy computation in the Wavejets basis
I Application to geometry processing, and more to explore

References:
I Arbitrary order principal directions and how to compute them, J. Digne, S.

Valette, R. Chaine, Y. Béarzi, Preprint Nov. 2021 ArXiv Preprint 2111.05800
I Wavejets: A Local Frequency Framework for Shape Details Amplification, Y.

Béarzi, J. Digne, R. Chaine 2018.
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