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From convolution to morphological operators

Convolution filters have been very successful in many vision
problems.

Convolutional Neural Networks (CNNs) learn the best filters for a
given task.

However, they are still cases where mathematical morphology makes
more sense than convolution.

Replacing ”convolution” of CNNs by basic morphological operators
(dilation and erosion) could be useful.

How can we learn the structuring elements and the right sequence
of operations for a given problem?
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Related Work

Learning morphological operators is not new. (Wilson [1993],
Nakashizuka et al. [2010], Barrera et al. [1997])

Recent hype on deep learning has motivated new techniques.

Some researchers use the max-plus and min-plus definition of
the dilation and erosion to perform grey-morphology on
grey-scale images. (Mondal et al. [2019, 2020], Franchi et al.
[2020])

Others replace the max operation by a softmax. (Masci et al.
[2013], Kirszenberg et al. [2021], Shen et al. [2019])

Others try to learn a binary SE for grey-scale morphology
(Nogueira et al. [2021])
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Motivation

Related research has primary worked on grey-scale images,
with either grey-scale or binary structuring elements.

Our aim is to perform shape analysis. For example, we want
to be able to detect useful ROIs given input regions, or to
infer the 3D shape using only a few slices.

To do so, we want a system that can take work with fully
binary inputs and binary structuring elements.
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Morphological operator from convolution
We rewrite the classical Minkowski addition and its dual operation with
convolution.

Proposition (Convolution for morphological operators)

Let S ⊂ Zd be a binary structuring element and X ⊂ Zd be a binary
image.

X ⊕ S =

(
1X ⊛ 1S ≥ 1

)
=

{
j ∈ Zd

∣∣∣(1X ⊛ 1S)(j) ≥ 1

}
(1)

X ⊖ S =

(
1X ⊛ 1S = card(S)

)
=

{
j ∈ Zd

∣∣∣(1X ⊛ 1S)(j) = card(S)

}
(2)
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Thresholding Weights

Find S ⊂ Zd using a weights matrix W ∈ {0, 1}Ω, with Ω the
support of the weights matrix (typically Ω = [−n, n]d ∩ Zd ,
with S ⊂ Ω).

Relax W to be smooth and use a smooth thresholding
ξ : R 7→]0, 1[ to ensure ξ(W ) ∈ [0, 1]Ω

1. ξ must be increasing
2. ξ(0) = 0.5
3. lim(ξ(x))x→−∞ = 0 and lim(ξ(x))x→+∞ = 1
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Binary Sructuring Element (BiSE) neuron

Definition (BiSE neuron)

Let W ∈ RΩ be a weight matrix, b ∈ R a bias, ξ a smooth
thresholding function and p ∈ R∗

+ a scaling number. We define a
BiSE neuron as follow:

ϵW ,b,p : x ∈ [0, 1]Z
d 7→ ξ(p(x ⊛ ξ(W )− b)) ∈ [0, 1]Z

d
(3)

The BiSE neuron is able to learn both an erosion and a
dilation, as well as the associated structuring element.

The weights W learn the structuring element.

The bias b determines the operation, either dilation or erosion.

The scaling number p determines how close to binary the
output is.

Theodore Aouad, Hugues Talbot Binary Morphological Neural Networks
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Equivalence BiSE / Dilation and Erosion - Binary input

Proposition

We assume the weights are thresholded: W ∈ [0, 1]Ω. Given a binary
input, ϵW ,b,+∞ is

a dilation by S if and only if
∑
i /∈S

wi ≤ b < min
i∈S

wi (4)

an erosion by S if and only if max
j∈S

(∑
i ̸=j

wi

)
≤ b <

∑
i∈S

Wi (5)
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BiSE Output

Proposition (BiSE Output)

Let u1, u2 the bounds of the bias for dilation or erosion. (Ex for
dilation, u1 :=

∑
i /∈S wi , u2 := mini∈S wi ). We assume that

u1 ≤ b < u2. Then we have:

I ⊛W /∈ ]u1, u2[ (6)

ϵW ,b,p(I ) /∈ ]ξ(p(u1 − b)), ξ(p(u2 − b))[ (7)
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BiSE Output

Best case scenario, we have b = v1(p)+v2(p)
2 . We show the possible

output values depending on p.
x /∈]u1, u2[ 7→ ξ(p ∗ x) /∈]v1(p), v2(p)[, with x = I ⊛W (j)− u1+u2

2 :
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Almost binary input

When a BiSE neuron is properly learned, the output will be either
close to 1 or close to 0. Does it make sense to stack BiSE neurons
if the outputs are not binary?

Definition (Almost Binary)

We say an image I ∈ [0, 1]Z
d
is almost binary if there exists

v1 < v2 ∈ [0, 1] such that I (Zd) /∈]v1, v2[.

We can extend the previously seen equivalence to almost binary
inputs.
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Equivalence BiSE / Dilation and Erosion - Almost Binary
input

Proposition (Dilation Equivalence)

We assume the weights are thresholded: W ∈ [0, 1]Ω. Given an almost
binary input, ϵW ,b,+∞ is a dilation by S if and only if∑

i /∈S

wi + v1
∑
i∈S

wi ≤ b < v2 min
i∈S

wi (8)

Proposition (Erosion Equivalence)

We assume the weights are thresholded: W ∈ [0, 1]Ω. Given an almost
binary input, ϵW ,b,+∞ is an erosion by S if and only if

max
j∈S

(∑
i ̸=j

(wi ) + v1wj

)
≤ b < v2

∑
i∈S

Wi (9)
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Binary Morphological Neural Network (BiMoNN)

Given an almost binary input, a properly trained BiSE neuron will
always output an almost binary input. This allows the stacking of
BiSE neurons sequentially.

Definition (Binary Morphological Neural Networks (BiMoNN))

We call a Binary Morphological Neural Networks (BiMoNN) a
composition of multiple BiSE neurons. Let K ∈ N∗, let
W = (W1, ...,WK ) ∈ RΩ1 × ...× RΩK the set of weights for each
BiSe neuron, b = (b1, ..., bK ) ∈ RK the set of biases and
p = (p1, ..., pK ) ∈ RK the set of scaling numbers. We denote the
BiMoNN as:

ϕW ,b,p = ϵWK ,bK ,pK ◦ ... ◦ ϵW1,b1,p1 (10)
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Deep Learning Optimization

Given a set of N couples of inputs-targets
{(Xi ,Yi ) | i ∈ {1, ...,N}}, given a loss function L : R2 7→ R,
we minimize:

min
W ,b,p

1

N

N∑
i=1

L(ϕW ,b,p(Xi ),Yi ) (11)

We optimize the loss using derivatives of stochastic gradient
descent (batch-SGD, ADAM, ...).

The BiMoNN is totally differentiable, and its convolutional
structure make it optimized to compute the gradient for each
parameter using back propagation.
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Training Data Generation

We train on generated binary data. The data is generated as
follow:

1. We generate N = 30 shapes

2. A shape is either a disk or a rotated rectangle box

3. We add random Bernoulli noise

4. We apply complementation with probability 0.5

5. We set the borders at 0 (depending on the kernel size Ω)
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Training Regimen

We tested on dilation, erosion, opening, closing.

We tested 6 structuring elements of size 7x7.

We generate images Xi and true targets Yi with the true
operation.

For dilation and erosion, we train on N = 200k images. For
opening and closing, we train on N = 1M images.

The loss function L we use is the binary cross-entropy:

L(ŷ , y∗) = y∗ log(ŷ) + (1− y∗) log(1− ŷ) (12)
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Results - Final Weights on Dilation / Erosion

Operation Disk Hstick Vstick Scross Dcross Square

Target

Dilation ⊕

OK OK OK OK OK OK

Erosion ⊖

OK OK OK OK OK OK
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Results - Final Weights on Opening / Closing

Operation Disk Hstick Vstick Scross Dcross Square

Target

Opening ◦

KO OK OK KO OK KO

Closing •

OK KO OK KO KO KO
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Conclusion

Conclusion

We introduce the BiSE neuron, that can learn the erosion,
dilation and structuring element

We introduce the BiMoNN, which in theory can learn any
composition of dilations and erosions

We managed to learn perfectly the erosion and dilation

We managed to learn some structuring elements for opening
and closing
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Future Work

Future work

Make the opening and closing work for more structuring
elements

Learn more complicated filters with multiple openings and
closings

Extend the BiMoNN to more complicated operations (for
example intersection / union of dilations / erosions)

Extend the network to classification

Extend to shape analysis on real data

Explore different BiSE possibilities

Theodore Aouad, Hugues Talbot Binary Morphological Neural Networks
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Jesus Angulo. Going beyond p-convolutions to learn grayscale
morphological operators. In International Conference on Discrete
Geometry and Mathematical Morphology, pages 470–482.
Springer, 2021.

Theodore Aouad, Hugues Talbot Binary Morphological Neural Networks



24/24

Introduction
BiSE Neuron

Experimental Results
Conclusion
References

References II
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Complementation

If we can force the BiSE neuron to be a dilation, we can learn only
the structuring element as well as a complementation.

Definition (Smooth complementation)

Let α ∈ [0, 1]. We define the smooth complementation Noα as:

Noα : x ∈ [0, 1] 7→ α · x + (1− α) · (1− x) (13)

If we pass a binary image X ∈ {0, 1}Zd
through the

complementation before giving it to a BiSE, then the input is
Noα(X ) ∈ {α, 1− α}Zd

.
We need to approximate the bias b to force a dilation.
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Dilation Approximation

Proposition

Let α ∈ [0, 1]. Let a = min(α, 1− α) and A = max(α, 1− α). S ⊂ Zd be
a structuring element. We consider all the possible images of values in
{α, 1− α}. We denote V = ∪I∈{α,1−alpha}Zd I ⊛ 1S(Zd). Then

card(V) = card(S) + 1. Let v0 < ... < vcard(S) ∈ V. Then:

∀i ∈ {0, ..., card(S)}, vi = a ∗ (card(S)− i) + A ∗ i (14)

Definition (Bias dilation function)

The best bias for dilation is b = v0+v1
2 . Given weights W ∈ RΩ and a

smooth thresholding ξ, we approximate card(S) by
∑

i∈Ω ξ(W (i)). We
define the bias dilation function:

b : α ∈ R 7→ min(ξ(α), 1− ξ(α))
(∑

i∈Ω

W (i)− 1
)
+ 0.5 (15)
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Definition (BiSEC neuron)

Let W ∈ RΩ be a weight matrix, ξ a smooth thresholding function
and p ∈ R∗

+ a scaling number. Let α ∈ R. Let b(α) be the bias
dilation function. We define a BiSEC neuron as follow, with Noα
a smooth complementation function:

ϵ̂W ,α,p : x ∈ [0, 1]Z
d 7→ Noξ(α∗∞) ◦ ϵW ,b(α),p ◦ Noξ(α) (16)
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Tropical BiSE
We use the fact that the dilation can be written with max instead,
inspired from grey-scale morphology.

Proposition (Tropical Dilation)

Let Ω ⊂ Zd a support kernel and S ∈ Ω a structuring element. If
W = −∞ · 1Ω\S , then

∀X ⊂ Zd , ∀j ∈ Zd , 1X⊕S(j) = max
i∈Ω

(1X (j−i)+W (i)) =: δW (X )j (17)

Definition (Tropical BiSE)

Let Ω ⊂ Zd be a support kernel and W ∈ RΩ a set of weights. Let
α ∈ R and Noα a smooth complementation function. We define the
tropical BiSE as:

ϵ̄W ,α = Noξ(α∗∞) ◦ δW ◦ Noξ(α) (18)
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BiSE Convolution Definition

It is the classic convolution. The difference with BiSE is that we
remove the smooth thresholding of weights.

Definition (BiSE Convolution)

Let Ω ⊂ Zd and W ∈ RΩ. Let b ∈ R and p ∈ R∗
+. Let ξ be a

smooth thresholding function. We define the BiSE Convolution
as:

CONVW ,b,p : I ∈ [0, 1]Z
d
= ξ(p(I ⊛W − b)) (19)

Theodore Aouad, Hugues Talbot Binary Morphological Neural Networks



10/10

Appendix
Complementation
Tropical Algebra

Convolution

BiSE Convolution Properties

Proposition (Dilation Equivalence)

We take the same notation as the previous definition. Let S ⊂ Ω. Then
CONVW ,b,+∞ is a dilation by S if and only if

max
K∈P(S̄)

(∑
i∈K

Wi

)
≤ b < min

K∈P(S),K ̸=∅

(∑
i∈K

Wi

)
(20)

Proposition (Erosion Equivalence)

We take the same notation as the previous definition. Let S ⊂ Ω. Then
CONVW ,b,+∞ is an erosion by S if and only if

max
K∈P(S̄)

(∑
i∈K

Wi

)
+max

j∈S

( ∑
i∈S,i ̸=j

Wi

)
≤ b <

∑
i∈S

Wi + min
K∈P(S̄)

(∑
i∈K

Wi

)
(21)
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